Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
BMC Complement Med Ther ; 22(1): 114, 2022 Apr 22.
Article in English | MEDLINE | ID: covidwho-1799107

ABSTRACT

BACKGROUND: Viral infections have a history of abrupt and severe eruptions through the years in the form of pandemics. And yet, definitive therapies or preventive measures are not present. Herbal medicines have been a source of various antiviral compounds such as Oseltamivir, extracted using shikimic acid from star anise (Illicium verum) and Acyclovir from Carissa edulis are FDA (Food and Drug Administration) approved antiviral drugs. In this study, we dissect the anti-coronavirus infection activity of Cissampelos pareira L (Cipa) extract using an integrative approach. METHODS: We analysed the signature similarities between predicted antiviral agents and Cipa using the connectivity map ( https://clue.io/ ). Next, we tested the anti-SARS-COV-2 activity of Cipa in vitro. Molecular docking analyses of constituents of with key targets of SARS-CoV2 protein viz. spike protein, RNA­dependent RNA­polymerase (RdRp) and 3C­like proteinase. was also performed. A three-way comparative analysis of Cipa transcriptome, COVID-19 BALF transcriptome and CMAP signatures of small compounds was also performed. RESULTS: Several predicted antivirals showed a high positive connectivity score with Cipa such as apcidin, emetine, homoharringtonine etc. We also observed 98% inhibition of SARS-COV-2 replication in infected Vero cell cultures with the whole extract. Some of its prominent pure constituents e.g. pareirarine, cissamine, magnoflorine exhibited 40-80% inhibition. Comparison of genes between BALF and Cipa showed an enrichment of biological processes like transcription regulation and response to lipids, to be downregulated in Cipa while being upregulated in COVID-19. CMAP also showed that Triciribine, torin-1 and VU-0365114-2 had positive connectivity with BALF 1 and 2, and negative connectivity with Cipa. Amongst all the tested compounds, Magnoflorine and Salutaridine exhibited the most potent and consistent strong in silico binding profiles with SARS-CoV2 therapeutic targets.


Subject(s)
COVID-19 Drug Treatment , Cissampelos , Antiviral Agents/pharmacology , Cissampelos/chemistry , Molecular Docking Simulation , Plant Extracts/chemistry , Plant Extracts/pharmacology , RNA, Viral , SARS-CoV-2
2.
researchsquare; 2022.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-1444367.v1

ABSTRACT

Main protease (M pro ) of SARS-CoV-2 is crucial for its replication/infection and has been recognized as an attractive drug target. In this study, we identified theaflavin 3-gallate as an inhibitor of M pro protein of SARS-CoV-2 with IC 50 value of 18.48 ± 1.29 µM. Compared to theaflavin, theaflavin 3-gallate exhibited superior antiviral activity and at a concentration of 200 µM reduced the viral count by 75% (viral particles reduced from 10 6.7 to 10 6.1 ). Time-dependent analyses of conventional and steered MD-simulations revealed stronger interactions of theaflavin 3-gallate with the active site residues of M pro than the standard molecule GC373 and theaflavin. Taken together, our findings suggest that theaflavin 3-gallate can be developed into a potential lead molecule against SARS-CoV-2.

3.
Colloid Interface Sci Commun ; 45: 100542, 2021 Nov.
Article in English | MEDLINE | ID: covidwho-1487663

ABSTRACT

Surfaces containing antiviral nanoparticles could play a crucial role in minimizing the virus spread further, specifically for COVID-19. Here in, we have developed a facile and durable antiviral and antimicrobial fabric containing photodeposited silver nanoparticles. Scanning and transmission electron microscopy, UV-VIS spectroscopy, and XPS are used to characterize the silver nanoparticles deposited cloth. It is evident that Ag0/Ag+ redox couple is formed during fabrication, which acts as an active agent. Antiviral testing results show that silver nanoparticles deposited fabric exhibits 97% viral reduction specific to SARS-CoV-2. Besides its excellent antiviral property, the modified fabric also offers antimicrobial efficiency when tested with the airborne human pathogenic bacteria Escherichia coli and fungi Aspergillus Niger. The direct photodeposition provides Ag-O-C interaction leads to firmly grafted nanoparticles on fabric allow the modified fabric to sustain the laundry durability test. The straightforward strategy to prepare an efficient antimicrobial cloth can attract rapid large-scale industrial production.

4.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.10.21.465254

ABSTRACT

The COVID19 pandemic has resulted in multipronged approaches for treatment of the disease. Since de novo discovery of drugs is time consuming, repurposing of molecules is now considered as one of the alternative strategies to treat COVID19. Antibacterial peptides are being recognized as attractive candidates for repurposing to treat viral infections. In this study, we describe the anti-SARS-CoV-2 activity of gramicidin S and melittin peptides obtained from Bacillus brevis and bee venom respectively. Our in vitro antiviral assay results showed significant decrease in the viral load compared to the untreated group with no/very less cytotoxicity. The EC50 values for gramicidin S and melittin are calculated as 1.571g and 0.656g respectively. Both the peptides treated to the SARS-CoV-2 infected Vero cells showed viral clearance from 12 hours onwards with a maximal clearance after 24 hours post infection. Based on proteome analysis it was found that more than 250 proteins were found to be differentially regulated in the gramicidin S and melittin treated SARS-CoV-2 infected Vero cells against control SARS-CoV-2 infected Vero cells after 24 and 48 hours post infection. The identified proteins were found to be associated in the metabolic and mRNA processing of the Vero cells post-treatment and infection. Both these peptides could be attractive candidates for repurposing to treat SARS-CoV-2 infection.


Subject(s)
COVID-19 , Severe Acute Respiratory Syndrome , Drug-Related Side Effects and Adverse Reactions
5.
Respir Res ; 22(1): 99, 2021 Apr 06.
Article in English | MEDLINE | ID: covidwho-1169963

ABSTRACT

BACKGROUND: COVID-19 pneumonia has been associated with severe acute hypoxia, sepsis-like states, thrombosis and chronic sequelae including persisting hypoxia and fibrosis. The molecular hypoxia response pathway has been associated with such pathologies and our recent observations on anti-hypoxic and anti-inflammatory effects of whole aqueous extract of Adhatoda Vasica (AV) prompted us to explore its effects on relevant preclinical mouse models. METHODS: In this study, we tested the effect of whole aqueous extract of AV, in murine models of bleomycin induced pulmonary fibrosis, Cecum Ligation and Puncture (CLP) induced sepsis, and siRNA induced hypoxia-thrombosis phenotype. The effect on lung of AV treated naïve mice was also studied at transcriptome level. We also determined if the extract may have any effect on SARS-CoV2 replication. RESULTS: Oral administration AV extract attenuates increased airway inflammation, levels of transforming growth factor-ß1 (TGF-ß1), IL-6, HIF-1α and improves the overall survival rates of mice in the models of pulmonary fibrosis and sepsis and rescues the siRNA induced inflammation and associated blood coagulation phenotypes in mice. We observed downregulation of hypoxia, inflammation, TGF-ß1, and angiogenesis genes and upregulation of adaptive immunity-related genes in the lung transcriptome. AV treatment also reduced the viral load in Vero cells infected with SARS-CoV2. CONCLUSION: Our results provide a scientific rationale for this ayurvedic herbal medicine in ameliorating the hypoxia-hyperinflammation features and highlights the repurposing potential of AV in COVID-19-like conditions.


Subject(s)
Anti-Inflammatory Agents/pharmacology , COVID-19 Drug Treatment , Drug Repositioning , Hypoxia/drug therapy , Justicia , Lung/drug effects , Plant Extracts/pharmacology , Pneumonia/prevention & control , Pulmonary Fibrosis/drug therapy , Sepsis/drug therapy , Animals , Anti-Inflammatory Agents/isolation & purification , Bleomycin , COVID-19/metabolism , COVID-19/virology , Cecum/microbiology , Cecum/surgery , Cytokines/genetics , Cytokines/metabolism , Disease Models, Animal , Hypoxia/genetics , Hypoxia/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Hypoxia-Inducible Factor-Proline Dioxygenases/genetics , Hypoxia-Inducible Factor-Proline Dioxygenases/metabolism , Inflammation Mediators/metabolism , Justicia/chemistry , Ligation , Lung/metabolism , Lung/microbiology , Lung/pathology , Male , Mice, Inbred BALB C , Mice, Inbred C57BL , Plant Extracts/isolation & purification , Pneumonia/genetics , Pneumonia/metabolism , Pneumonia/microbiology , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/genetics , Pulmonary Fibrosis/metabolism , RNA Interference , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Sepsis/genetics , Sepsis/metabolism , Sepsis/microbiology , Transcriptome
6.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.03.23.436593

ABSTRACT

Background: Earlier studies suggested the use of dry swab method for SARS-CoV-2 detection as it does not need VTM and subsequent RNA extraction step making the process cheaper, safer and faster. In this study we explore whether the virus in the dry swab is viable and can be cultured and propagated. Method: Swabs were spiked with SARS-CoV-2 and stored in three different conditions: a) as dry swab (SD, eluted in 1 mL DMEM), b) in 1 mL of Viral Transport Medium (SVTM), and c) in 1 mL of Tris-EDTA buffer (STE). The sample groups were stored either at room temperature (RT ,25{degrees}C{+/-}1{degrees}C) or at 4{degrees}C for 1, 4, 8, 12, 24, 48 and 72 hours before being used as viral inoculums for the propagation studies in Vero cells. Results: The RT-qPCR data suggests that SD incubated both at RT and 4{degrees}C harbors viral particles that are viable and culturable at par with SVTM and STE. Conclusion: The dry swab method, in addition to its advantages in detection of the virus, also renders viable viral particles that can be cultured and propagated.

SELECTION OF CITATIONS
SEARCH DETAIL